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Nanomedicine is a branch of nanotechnology that includes the development of nanostructures and nanoanalytical systems for various medical 
applications. The rapid development of nanomedicine offers new possibilities in cancer diagnosis and treatment. New therapeutic strategies in 
cancer research using nanoparticles are being developed in order to improve the specificity and efficacy of drug delivery, thus reaching maximal 
effectiveness with minimal side effects. Due to its selective overexpression in prostate cancer (PCa), prostate-specific membrane antigen (PSMA) 
has been recognized as a highly promising target for diagnostic and therapeutic applications. This review provides an update on the PSMA-based 
nanomedicine applications in PCa.
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Introduction

Theranostic Concept

Targeted cancer therapy can improve progression-free and 
overall survival. However, the greatest barrier to targeted 
therapy is identifying the patients who will benefit from it. 
Therefore, predictive markers are urgently needed. Radiolabeled 
probes can be used as predictive markers. For instance, target 
expression can be confirmed by positron-emitting tomography 
(PET) using F-18- or Ga-68-labeled ligands. The same ligands 
can be labeled with therapeutic radionuclides (Lu-177/Y-90) 
for radioligand therapy (RLT). This combination is called a 
theranostic pair. 

Nuclear medicine specialists used this method with I-131 
to treat metastatic thyroid adenocarcinoma in 1946 (1). 
By using I-131 in diagnostic screening, they were able to 
identify patients with differentiated thyroid carcinoma who 
would benefit from treatment with a higher dose of I-131 (2). 
In the 1990s, the theranostic approach progressed toward 
neuroendocrine tumors (NET). Somatostatin analogs DOTATOC, 
DOTANOC, and DOTATE were developed to selectively bind to 
NETs overexpressing somatostatin receptors (SSTR) (3,4,5). 
Labeling these SSTR agonists with different radionuclides 

enabled the combination of diagnostic imaging (Ga-68) with 
radioligand treatment (Lu-177/Y-90) (3,4,5). NETTER-1 was 
the first randomized prospective study comparing Lu-177-
labeled DOTATE with octreotide long-acting repeatable (LAR) 
in metastatic NET. Lu-DOTATE RLT significantly prolonged 
progression-free survival (PFS) compared to octreotide LAR (6). 
Progression was 4.8-fold more frequent among patients who 
received high-dose octreotide than in those given Lu-177DOTATE 
(HR: 0.21, 95% CI: 0.13-0.34) (6). This treatment is currently 
known as peptide receptor radionuclide therapy (PRRT) and is 
widely accepted and used in patients with NET (5).

Prostate-specific Membrane Antigen as a Target in Prostate 
Cancer

Prostate-specific membrane antigen (PSMA), also known as 
glutamate carboxypeptidase II, is a promising theranostic target 
(7-9). PSMA is a type II transmembrane protein comprised of a 
small intracellular segment, a transmembrane domain, and an 
extracellular domain containing the catalytic site (8,9). PSMA is 
expressed at low levels in various tissues such as prostate, brain, 
small intestine, and kidney (8,9). While PSMA has different 
enzymatic functions in brain and small intestine, its enzymatic 
function in the prostate is not yet clear (9). Most importantly, 
PSMA is overexpressed in prostate cancer cells and its expression 
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level is correlated with pathological grade (10,11,12,13,14,15). 
Moreover, after ligand binding, PSMA is internalized via clathrin-
coated pits and endocytosis (11,16). These characteristics have 
led to the development of therapeutic PSMA ligands labeled 
with different radionuclides.

PSMA-targeted Agents

One of the first probes that targeted PSMA was Indium-111 
capromab pendetide (ProstaScint®). Capromab is a monoclonal 
antibody that binds to the cytoplasmic domain of PSMA (16). 
Probes that target the extracellular domain of PSMA, such as 
antibody J591, have been developed to improve tumor uptake. 
However, antibody-based approaches have limited diagnostic 
potential (8). In recent years, nanoparticle PSMA ligands have 
been developed. One of these is Ga-68-PSMA-11, which is 
the most commonly used PET probe in PSMA-based imaging 
(17). Ga-68-PSMA-11 shows excellent biodistribution and 
high tumor uptake (18). However, PSMA-11 cannot be labeled 
with Lu-177 or Y-90 for RLT (19). Therefore, nanoparticle 
ligands with different chelators were developed. Weineisen 
et al. (19,20) synthesized DOTAGA-FFK (Sub-KuE), which 
can be labeled with Ga-68 or Lu-177/Y-90, and its optimized 
version, PSMA I&T. PSMA I&T has good dosimetry and similar 
biodistribution to Ga-68-PSMA-11 (20). A research group in 
Heidelberg also developed PSMA-617, which can be labeled 
with Ga-68 or Lu-177/Y-90. This probe showed high affinity 
to PSMA and high tumor base uptake (21,22). Based on their 
similar biodistribution, PSMA-11 and PSMA-617 are frequently 
used in combination as diagnostic and therapeutic agents (22). 
Moreover, commercial ligands labeled with Tc-99m or I-131 
have been developed as theranostic pairs (23,24). Mease et 
al. (25) and Cho et al. (26) synthesized 18-FDCFBC, which 
is an F-18-labeled small-molecule PSMA inhibitor. This agent 
reliably detects prostate cancer. The second-generation probe 
18-FDCFPyL has shown higher affinity for PSMA and tumor 
uptake than 18-FDCFBC (27). This probe has good dosimetry 
and biodistribution, but cannot be labeled with Lu-177 or Y-90 
for RLT (28). 

Here we present an overview of PSMA-targeted diagnosis and 
RLT.

PSMA Imaging for Primary Diagnosis

Imaging serves two purposes in the primary diagnosis of prostate 
cancer. The first is to detect disease progression in patients who 
have biopsy-proven disease or high metastasis risk, and the 
second is to determine primary tumor location in patients with 
high suspicion but negative biopsy (29). Magnetic resonance 
imaging (MRI) is currently the preferred modality for T staging 
(29). T2-weighted, dynamic contrast-enhanced, and diffusion-
weighted sequences are used to identify tumor involvement, 
extracapsular extension, seminal vesicle invasion, and/or other 
organ involvement. Moreover, combining these protocols with 
multiparametric MRI (MP-MRI) enables the differentiation of 
benign and malignant prostate tissue (30). MRI is superior to 
C-11-choline PET/CT (31,32,33), FDG-18 PET/CT (31), and 
ultrasound-guided biopsy (34) for primary diagnosis. 

PSMA PET Imaging for T Staging

Rowe et al. (35) reported that MRI had higher sensitivity in the 
detection of primary lesions compared to F-18-DCFBC PET/CT. 
The importance of the second-generation radionuclide tracer 
F-18-DCFPyL in the detection of primary prostate lesions has 
not yet been evaluated. Ga-68-PSMA-11 PET is superior to 
MP-MRI, with a sensitivity of 49-76% in different populations 
(36,37). Ga-68-PSMA-11 uptake was found to be significantly 
higher in histopathology-positive areas than negative areas 
(37). The accuracy of GA-68-PSMA-11 PET/CT in the detection 
of seminal vesicle invasion and extracapsular tumor spread was 
86% and 71%, respectively (37). Based on these findings, PSMA 
imaging has the potential to replace MP-MRI for determining 
tumor location. 

Clinically, treatment options for localized prostate cancer 
may vary from active surveillance to radiotherapy and radical 
prostatectomy. T staging is important for determining the 
best approach. European Association of Urology guidelines 
recommend MP-MRI for T staging (29), and although PSMA 
is superior in the detection of primary prostatic lesions, 
increased diagnostic accuracy has not been shown to have a 
significant effect on patient management. Of 15 patients who 
underwent MRI and were diagnosed with prostate cancer, 
planned radiotherapy was changed in 26.4% after additional 
PSMA imaging (additional dose, wide area) (38). However, 
due to inadequate long-term follow up and lack of a control 
group, the effects of these findings on patient outcomes are 
not known. Therefore, further studies are required to determine 
whether PSMA PET influences clinical management at initial 
diagnosis of patients with prostate cancer. 

PSMA Imaging for N Staging 

Many studies have demonstrated high reliability of Ga-68-
PSMA-11 PET/CT in N-staging at primary diagnosis. Budäus 
et al. (39) retrospectively compared lymph node findings in 
preoperative Ga-68-PSMA-11 PET/CT with histopathology in 
12 patients and reported a low detection rate of 33.3% and 
mean sizes of detectable and undetectable lymph nodes of 
13.6 mm and 4.3 mm, respectively. Later studies showed 
that Ga-68-PSMA-11 PET/CT or PET/MRI were superior to 
conventional imaging techniques in the detection of lymph 
nodes (40,41,42). In one study, lymph node metastasis was 
detected using Ga-68-PSMA-11 PET/CT in 12 patients in whom 
conventional imaging modalities did not show lymph node 
involvement (40). Herleman et al. (41) demonstrated that 
the accuracy of Ga-68-PSMA-11 PET/CT (88%) was superior 
to that of CT (77%). More importantly, 40% of the lymph 
nodes detected via Ga-68-PSMA-11 PET/CT were reported to 
have short axis lengths of <5 mm (41). In a prospective study 
including 30 moderate/high-risk patients, the mean diameters 
of lymph nodes that were actually detected and those that 
could not be detected using Ga-68-PSMA-11 PET/CT were 
4.7 mm and 2.7 mm, respectively (42). None of the currently 
available imaging modalities are able to accurately detect lymph 
nodes because of their size. However, PSMA PET is superior 
to conventional imaging methods in the detection of lymph 
nodes. With the exception of the study by Maurer et al. (40), its 
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specificity and sensitivity were higher than CT and MRI. PSMA 
PET imaging has the potential to determine N stage and thus to 
change initial prostate cancer stage. 

PSMA Imaging for M Staging

In all previous studies, Ga-68-PSMA-11 PET/CT was used 
for whole-body screening. PSMA imaging detects bone and 
visceral metastases more accurately than conventional imaging 
modalities (CT and bone scintigraphy). In a retrospective 
study including 126 patients, Ga-68-PSMA-11 PET/CT detected 
osseous metastases with 99% sensitivity and 88% specificity, 
whereas these rates were 87% and 61% in bone scintigraphy, 
respectively (43). 

Although PSMA PET imaging is better in M staging, it is not yet 
clear whether this advantage makes a positive impact in patient 
management.

Limitations of PSMA PET in Primary Staging  

Firstly, PSMA expression in primary lesions is variable and 
heterogeneous, and thus, sensitivity is limited (44). Moreover, 
benign diseases such as prostate hyperplasia are associated 
with high PSMA expression and have the potential to reduce 
specificity (45,46). Although PSMA PET is more reliable in TNM 
staging compared to conventional methods, studies focusing 
on the clinical effect of Ga-68-PSMA-11 PET/CT at primary 
diagnosis are needed.

PSMA Imaging for Biochemical Recurrence

The risk of biochemical recurrence of prostate cancer is 15-20% 
within 5 years of first treatment and 25-30% within 10 years 
(47,48). Correct diagnosis and tumor location are essential 
because clinical management varies from active surveillance 
to local/systemic treatment (29). Despite important advances 
in imaging methods, determining the location of recurrences 
remains a major challenge. For patients with elevated PSA 
or clinical symptoms, current guidelines recommend either 
radionuclide bone scintigraphy, abdominopelvic CT, MP-MRI, 
or choline/acetate PET/CT (29). However, the recommended 
imaging modalities have limited detection rates (29,24). In 
patients with serum PSA level <7 ng/mL, the probability of 
having a positive bone scintigraphy is <5% (29,30,31,32,33,3
4,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51). CT is 
positive in only 11-14% of patients with biochemical recurrence 
(51). Moreover, in a study of 132 patients, it was reported 
that in order for CT to be positive, the mean PSA value must 
be 27.4 ng/mL (51). In patients with high-risk prostate cancer, 
MRI and choline PET/CT were reported to have comparable 
sensitivity in the detection of bone metastasis (52). However, 
the rate of lymph node detection is very low (53). Depending 
on serum PSA levels, choline or acetate PET are reported to 
have a detection rate between 11-75%, and the detection 
range is 5-44% at PSA <1 ng/mL (54,55,56,57,58,59,60,61). 
Its main limitation is low sensitivity for micrometastatic disease. 
Therefore, choline PET/CT is now recommended for patients 
with biochemical recurrence and PSA >1 ng/mL (29). Ga-68-
PSMA-11 PET/CT is promising for determining tumor location 
in patients with biochemical recurrence. There are studies 
reporting a high overall accuracy rate of around 54-100% for 

median PSA levels of 0.2-4.6 ng/mL. Moreover, the detection 
rate in patients with PSA level <1 ng/mL is between 44-73%. 
These results are also confirmed by a prospective study including 
31 patients. Location of recurrence was accurately determined 
in 22/31 patients (71%) using Ga-68-PSMA-11 PET/CT (62). In 
this patient group, median PSA was reported as 2.0 ng/mL (0.1-
130 ng/mL). The detection rate was found to be 47.6% in those 
with PSA <0.83 ng/mL (62). The rate of detection by Ga-68-
PSMA-11 PET/CT increased with elevated PSA levels (63-65). 
However, Gleason score and neoadjuvant or adjuvant androgen 
therapy did not affect the detection rate (63).

Impact on Patient Management 

Ga-68-PSMA-11 PET/CT has resulted in management changes 
in patients with early biochemical recurrence (65,66). In two 
different studies, management of treatment was changed in 
60% and 29% of patients scheduled for radiotherapy based on 
the results of Ga-68-PSMA-11 PET/CT (65,66). In one of those 
studies, Sterzing et al. (66) reported a switch from radiotherapy 
to systemic treatment in only 4 of 42 patients (10%) and 
changes in radiation dosage and location only in the other 21 
of 42 patients (50%). In the other, Van Leeuwen et al. (65) 
reported significant management changes in 11/20 patients 
(55%) who were scheduled for salvage radiotherapy. Of these 
patients, therapy was changed from radiotherapy to surgery 
in 1/20 (5%), androgen suppression treatment was added for 
6/20 (30%), salvage radiotherapy was changed to extrapelvic 
stereotactic radiotherapy in 3/20 (15%), and stereotactic 
radiotherapy was added for an extrapelvic lesion in 1/20 (5%) 
(65). Overall, evidence to date shows that PSMA imaging has 
overcome the limitations of choline PET/CT and conventional 
imaging modalities in patients with biochemical recurrence and 
low PSA levels. In addition, PSMA imaging influences treatment 
approach in some patients with biochemical recurrence. 
Therefore, PSMA imaging has the potential to become routine 
for patients with biochemical recurrence due to its superiority 
over conventional imaging modalities and its role in guiding 
therapeutic management (66).

PSMA Therapy

Current approaches in metastatic castration-resistant prostate 
cancer include chemotherapy, hormone therapy, and abiraterone 
or enzalutamide. In addition, Radium-223 was approved for the 
treatment of symptomatic bone metastases. The first RLT in 
prostate cancer used Lu-177-J591, a monoclonal antibody with 
affinity for the extracellular domain of PSMA (67). Although this 
treatment showed promising outcomes, it was limited due to 
myelosuppression (67). With the development of PSMA ligands 
with nanoparticles, Lu-177-based radionuclide therapies are 
being reinvestigated in patients with metastatic prostate cancer. 
Some studies have yielded promising results using Lu-177-
labeled PSMA ligands. The mean tumor dose is 6-12-fold 
higher than in the critical organs, kidneys, and salivary glands 
(68). Moreover, the tumor/organ ratio is higher than Lu-177-
DOTATE, which is the standard RLT for NET patients (68,69). 
Reduction in PSA was observed in 59-89% of patients after 
a single dose of Lu-177-PSMA RLT using PSMA-617 or PSMA 
I&T. In addition, the reduction in PSA was greater than 50% 
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in 26.3-58.9% of the patients. Furthermore, Ga-68-PSMA PET/
CT was performed on patients at 6 months after the last cycle 
to determine disease progression. Based on different criteria, 
partial treatment response was seen in 56-91%, stable disease in 
0-64%, and progression in 9.1-36%. Finally, overall survival was 
compared in patients under Lu-177-PSMA treatment among a 
cohort receiving best supportive therapy. It was reported that 
overall survival was 29.4 weeks with Lu-177-PSMA treatment 
versus 19.4 weeks with best supportive care (HR: 0.44, 95% 
CI 0.20-0.95, P=0.031) (70). In conclusion, Lu-177-PSMA can 
potentially prolong life. A similar effect was shown in advanced 
prostate cancer using I-131-labeled MIP-1095 compound, but 
the data are limited (24).

Toxicity

Patients receiving Lu-177-labeled PSMA RLT experienced 
severe side effects. Mild and reversible side effects noted 
in retrospective studies included dry mouth, nausea, and 
fatigue (70,71,72,73,74,75,76). Heck et al. (74) reported grade 
1-2 toxicity such as anemia (32%) and thrombocytopenia 
(25%). In another study, grade 3 anemia occurred in 2/24 
patients (8.3%) (72). No marked nephrotoxicity (grade 3,4) 
was observed (71,72,73,74,75,76). Most patients tolerated 
therapy, and no acute side effects after Lu-177-PSMA injection 
have been reported (72,73,74,75,76). Ahmadzadehfar et al. 
(72) retrospectively studied adverse events in 10 patients 
and reported grade 3/4 hematological toxicity in 1 patient 7 
weeks after RLT administration. Most patients (n=6) showed 
no hematological toxicity during the 8 weeks after injection 
(72). When compared with current chemotherapies, Lu-177-
based therapies have milder side effects. In the GETUG-AFU 
15 study, 38% of patients receiving chemotherapy together 
with androgen suppression treatment experienced severe side 
effects, primarily neutropenia (77).

Conclusion

Lu-177-PSMA therapy has shown promising results. It is efficient 
and well-tolerated, and can prolong overall survival. However, 
most studies have been retrospective in design. Further 
randomized, controlled studies are needed to demonstrate the 
clinical value of PSMA-targeted RLT.
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